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ONE-MINUTE SUMMARY FOR BUSY RESEARCHERS

Inference on differentially private data is biased. This bias can be decreased by differentially private importance sampling.

1) DP synthetic data gen-
eration, i.e. with DP-GAN

2) Importance weight estima-
tion on synthetic data samples

3) Downstream inference, i.e.
classification, on weighted DP data

We propose three different approaches to estimate DP importance weights.
1. Differentially private logistic regression:

(a) We learn a discriminating logistic regression to differentiate between true and synthesised data.
(b) We privatise the coefficient vector by adding Laplacian noise.
(c) We predict the importance weights by the sigmoid of the regression predictions on the synthetic data.
(d) We correct the bias induced by the perturbations.

More info!

2. Differentially private neural networks: We train a discriminating neural network to differentiate between true and synthesised data using a modified
DP-SGD procedure.

3. Discriminator weights of DP-GANs: If the synthetic data generator is a DP-GAN, we use the logit predictions of the discriminator on the synthesised
data as importance weights.

1) Background

Differential privacy
• Two datasets D and D′ are neighbouring when they differ by at most one observation. A
randomised algorithm g :M → R satisfies (ϵ, δ)-differential privacy for ϵ, δ ≥ 0 if and
only if for all neighbouring datasets D,D′ and all subsets S ⊆ R, we have

Pr(g(D) ∈ S) ≤ δ + eϵPr(g(D′) ∈ S).

• The sensitivity of g w.r.t a norm | · | is defined by the smallest number S(g) such that for
any two neighbouring datasets D and D′ it holds that

|g(D)− g(D′)| ≤ S(g).

Dwork et al. (2006) show that to ensure the differential privacy of g, it suffices to add
Laplacian noise with standard deviation S(g)/ϵ to g.

Importance weighting
Let the true data distribution be denoted by pD , and the synthesised data be sampled
from pG. Additionally, we assume w(x) :=

pD(x)
pG(x) , and pG(·) > 0 whenever h(·)pD(·) > 0.

It then holds,
Ex∼pD

[h(x)] = Ex∼pG
[w(x)h(x)] .

So we have almost surely the convergence

IN (h|w) := 1

NG

NG∑
i=1

w(xi)h(xi)
NG→∞−→ Ex∼pD

[h(x)].

for x1:NG

i.i.d.∼ pG. Note that we can use this approximation universally for empirical
risk minimisation, and 2) Bayesian updating. If no weighting is possible, the importance
weights can be used for resampling the synthetic data set before inference.

2) Differentially Private Importance Weighting

Any calibrated classification method that learns to distinguish between data from the
true data distribution, labelled thenceforth with y = 1, and from the synthetic data
distribution, labelled with y = 0, can be used to estimate the likelihood ratio (Sugiyama
et al., 2012). We compute

ŵ(x) =
p̂D(x)

p̂G(x)
=

p̂(x|y = 1)

p̂(x|y = 0)
=

p̂(y = 1|x)
p̂(y = 0|x)

p̂(y = 0)

p̂(y = 1)

where p̂ are the probabilities estimated by such a classification algorithm.

Differentially private logistic regression
• If the data is scaled to a range from 0 to 1 such that X ⊂ [0, 1]d, Chaudhuri et al. (2011)
show that the L2 sensitivity of the optimal coefficient vector estimated by β̂ in a regu-
larised logistic regression with model

p̂(y = 1|xi) = σ(β̂Txi) =
(
1 + e−β̂T xi

)−1

is S(β̂) = 2
√
d/(NDλ) where λ is the coefficient of the L2 regularisation term added to

the loss during training.

• Ji and Elkan (2013) propose to compute DP importance weights by training such an
L2 regularised logistic classifier on the private and the synthetic data, and perturb
the coefficient vector β̂ with Laplacian noise. For a d dimensional noise vector ζ with
ζj

i.i.d.∼ Laplace(0, ρ) with ρ = 2
√
d/(NDλϵ) for j ∈ {1, . . . , d}, the private regression

coefficient is then β = β̂ + ζ , and

logw(xi) = β
T
xi = β̂Txi + ζxi. (1)

Proposition 1 (informal) Let w denote the importance weights computed by noise per-
turbing regression coefficients as in Equation 1 (Ji and Elkan, 2013, Algorithm 1). The
resulting IS estimator is biased.

Proposition 2. Let w denote the importance weights computed by noise perturbing the
regression coefficients (Ji and Elkan, 2013, Algorithm 1). Define

b(xi) := 1/Epζ
[exp

(
ζTxi

)
],

and adjusted importance weight
w∗(xi) = w(xi)b(xi) = ŵ(xi) exp

(
ζTxi

)
b(xi).

The importance sampling estimator IN (h|w∗) is unbiased and (ϵ, δ)-DP for
Epζ

[exp
(
ζTxi

)
] > 0.

Differentially private neural networks

We train a discriminating neural network, with following SGD variant.
Input: Examples x1:ND

, y1:ND
from the DGP and xND+1:ND+NG

, yND+1:ND+NG
from the

SDGP, loss function L(θ) = 1
NG+ND

∑
i L(θ, xi, yi). Parameters: learning rate ηt, noise

scale σ, expected lot size L, gradient norm bound C .

Initialise θ0 randomly
for t ∈ [T ] do

Construct a random subset Lt ⊂ {1, . . . , ND + NG} by including each index inde-
pendently at random with probability L

ND+NG

Compute gradient For each i ∈ Lt, compute gt(xi, yi)← ∆θtL(θt, xi, yi)

Clip gradient gt(xi, yi)← gt(xi, yi)/max(1, ||gt(xi,yi)||2
C )

Add noise g̃t ← 1
L

∑
i∈Lt

(gt(xi, yi) + N(0, σ2C2I)1(yi=1)), where 1(yi=1) is 1 if
yi = 1 and 0 otherwise
Descent θt+1 ← θt + ηtg̃t

Output: θT and the overall privacy cost (ϵ, δ) using the moment’s accountant of Abadi
et al. (2016) with sampling probability q = L

ND+NG
.

Algorithm 1. Relaxed DP SGD; differences to Abadi et al. (2016) in blue.

Discriminator weights of DP-GANs
• GANs produce realistic synthetic data by trading off the learning of a generator Ge to
produce synthetic observations, with that of a classifier Di learning to correctly classify
the training and generated data as real or fake.

• In contrast to the weights computed from DP classification networks, this approach is
more robust, requires less hyperparameter tuning, and does not use up additional privacy
budget!

3) Selected Results

0.5 0.0 0.5
0

250

500

750
None

20 0
0

200

400
True

2.5 0.0 2.5
0

50

100

150

LogReg

2.5 0.0
0

50

100

BetaNoised

2.5 0.0
0

50

100

150
BetaDebiased

5 0
0

100

200

300

MLP

5 0
0

200

400

DP-MLP

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

Figure 1. KDE plots of 100 observations sampled from a two dimensional uniform square distribution as SDGP
(bottom left) and a uniform triangle distribution as DGP (second figure in second row). The first row depicts
histograms of the computed weights starting with the true importance weights (True). The DP weights were
privatised with ϵ = 1, and the regularisation was chosen as λ = 0.1. The second row illustrates the importance
weighted synthetic observations. We observe that while BetaDebiased corrects the weights of the logistic
regression, the complex nature of the MLPs allows a better modelling of the DGP even in this simple setting.

IW β MSE ↓ MLP AUC ↑
None 0.6605±0.03 0.8502±0.03

BetaNoised 0.6247±0.01 0.8766±0.00

BetaDebiased 0.6240±0.01 0.8783±0.00

DP-MLP 0.5813±0.02 0.8683±0.00

Discriminator 0.6242±0.01 0.8631±0.03

LogReg 0.6234±0.01 0.8770±0.00

MLP 0.5707±0.02 0.8737±0.00

Table 1. Mean and standard error over 10
runs with standard errors for (ϵ = 9.64, δ =
60, 000−1 − e−6) on MNIST.

SDGP data BetaNoised BetaDebiased
CGAN Breast 1.4833±0.96 0.0775±0.01

Banknote 0.0420±0.02 0.0413±0.01

Iris 8.7522±4.98 3.46±1.30

GAN Housing 8.2081±7.77 1.4406±0.83

DPCGAN Breast 0.0582±0.01 0.0445±0.01

Banknote 0.0420±0.02 0.0413±0.01

Iris 0.7834±0.231.2300±0.70

Table 2. Mean MSE of the DP log importance weights
over 10 runs with standard errors reported in brackets
for (ϵ = 1, δ = 10−5) where ϵIW = 0.1ϵ.
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