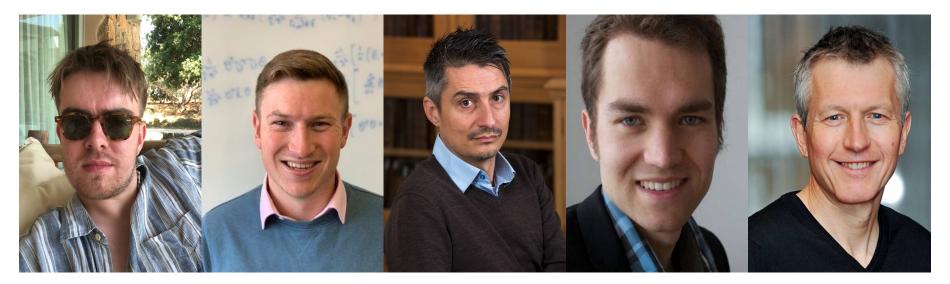
Mitigating Statistical Bias within Differentially Private Synthetic Data

Sahra Ghalebikesabi

Our Team



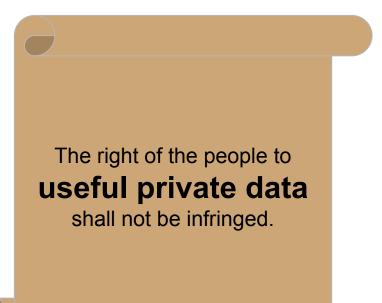
Harrison Wilde

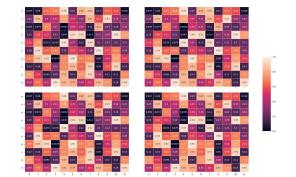
Jack Jewson

Arnaud Doucet

Sebastian Vollmer

Chris Holmes

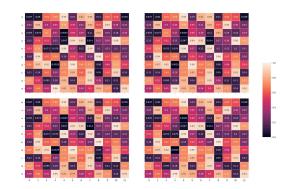






The right of the people to **useful private data** shall not be infringed.

NEW



1

Train Differentially Private Synthetic Data Generator

- 1 Train Differentially Private Synthetic Data Generator
- 2 Generate Synthetic Data Samples

- 1 Train Differentially Private Synthetic Data Generator
- 2 Generate Synthetic Data Samples
- 3 Estimate Differentially Private Importance Weights

- 1 Train Differentially Private Synthetic Data Generator
- 2 Generate Synthetic Data Samples
- 3 Estimate Differentially Private Importance Weights
- 4 Perform downstream tasks on importance weighted synthetic data

1

Train Differentially Private Synthetic Data Generator

Differential Privacy

A randomised algorithm $g : \mathcal{M} \to \mathcal{R}$ satisfies (ϵ, δ) differential privacy for $\epsilon, \delta \geq 0$ if and only if for all neighbouring datasets $\mathcal{D}, \mathcal{D}'$ and all subsets $S \subseteq \mathcal{R}$, we have

$$\Pr(g(\mathcal{D}) \in S) \le \delta + e^{\epsilon} \Pr(g(\mathcal{D}') \in S).$$

Differential Privacy by Noising

The **sensitivity** of g w.r.t a norm $|\cdot|$ is defined by the smallest number S(g) such that for any two neighbouring datasets \mathcal{D} and \mathcal{D}' it holds that

$$|g(\mathcal{D}) - g(\mathcal{D}')| \le S(g).$$

To ensure the $(\epsilon, 0)$ -differential privacy of g, it suffices to add Laplacian noise with standard deviation $S(g)/\epsilon$ to g.

1

Train Differentially Private Synthetic Data Generator

1

Train Differentially Private Synthetic Data Generator

Generative Adversarial Nets

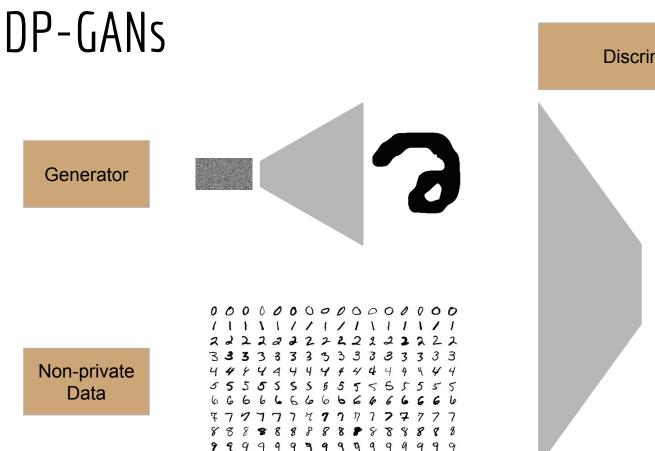
Generator

Non-private Data Discriminator

True or Fake?

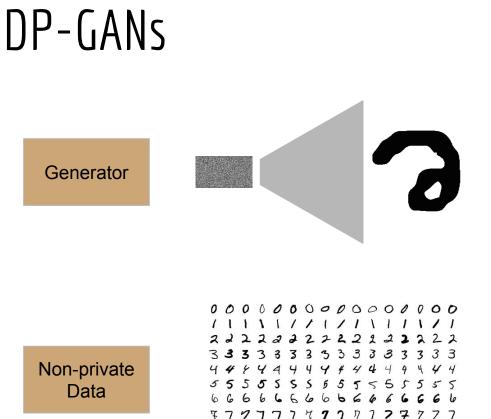
1

Train Differentially Private Synthetic Data Generator

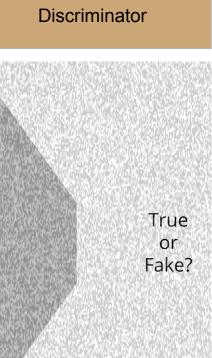


Discriminator

True or Fake?



8 8

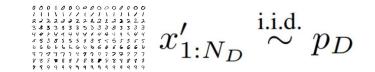


Generator

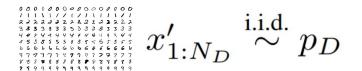
- 1 Train Differentially Private Synthetic Data Generator
- 2 Generate Synthetic Data Samples

- 1 Train Differentially Private Synthetic Data Generator
- 2 Generate Synthetic Data Samples
- **3 Estimate Differentially Private Importance Weights**

$$\begin{array}{c} & & \\$$

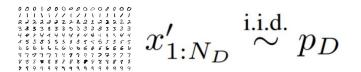


$$\mathbf{a} x_{1:N_G} \overset{\text{i.i.d.}}{\sim} p_G$$



 $p_G(\cdot) > 0$ whenever $h(\cdot)p_D(\cdot) > 0$

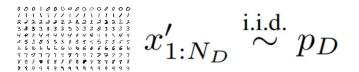
$$\mathbf{T} x_{1:N_G} \overset{\text{i.i.d.}}{\sim} p_G$$



 $p_G(\cdot) > 0$ whenever $h(\cdot)p_D(\cdot) > 0$

$$w(x) := \frac{p_D(x)}{p_G(x)}$$

$$\mathbf{\widehat{7}} \ x_{1:N_G} \overset{\text{i.i.d.}}{\sim} p_G$$



 $p_G(\cdot) > 0$ whenever $h(\cdot)p_D(\cdot) > 0$

$$w(x) := \frac{p_D(x)}{p_G(x)}$$

$$\mathbb{E}_{x \sim p_D}[h(x)] = \mathbb{E}_{x \sim p_G}[w(x)h(x)]$$

1) GAN discriminator weights

$$\frac{\widehat{p}(y=1|x)}{\widehat{p}(y=0|x)}$$

1) GAN discriminator weights

$$\frac{\widehat{p}(y=1|x)}{\widehat{p}(y=0|x)}$$

$$= \frac{\widehat{p}(y=1|x)}{\widehat{p}(y=0|x)} \frac{\widehat{p}(y=0)}{\widehat{p}(y=1)}$$

1) GAN discriminator weights

$$\frac{\widehat{p}(y=1|x)}{\widehat{p}(y=0|x)}$$

$$= \frac{\widehat{p}(y=1|x)}{\widehat{p}(y=0|x)} \frac{\widehat{p}(y=0)}{\widehat{p}(y=1)}$$

$$=\frac{\widehat{p}(x|y=1)}{\widehat{p}(x|y=0)}=\frac{\widehat{p}_D(x)}{\widehat{p}_G(x)}$$

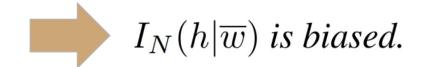
If the data is scaled to a range from 0 to 1 such that $X \subset [0, 1]^d$, Chaudhuri et al. (2021) show that the L_2 sensitivity of the optimal coefficient vector estimated by $\hat{\beta}$ in a regularised logistic regression with model

$$\widehat{p}(y=1|x_i) = \sigma(\widehat{\beta}^T x_i) = \left(1 + e^{-\widehat{\beta}^T x_i}\right)^{-1}$$

is $S(\hat{\beta}) = 2\sqrt{d}/(N_D\lambda)$ where λ is the coefficient of the L_2 regularisation term added to the loss during training.

Ji and Elkan (2013)

 $\overline{\beta} = \widehat{\beta} + \zeta_i$ $\log \overline{w}(x_i) = \overline{\beta}^T x_i = \widehat{\beta}^T x_i + \zeta x_i$



Proposition 2 (Supplement B.2). Let \overline{w} denote the importance weights computed by noise perturbing the regression coefficients as in Equation (8) (Ji and Elkan 2013, Algorithm 1) where ζ can be sampled from any noise distribution that ensures (ϵ, δ) -differential privacy of $\overline{\beta}$. Define

$$b(x_i) := 1/\mathbb{E}_{p_{\zeta}}[\exp\left(\zeta^T x_i\right)],$$

and adjusted importance weight

$$\overline{w}^*(x_i) = \overline{w}(x_i)b(x_i) = \widehat{w}(x_i)\exp\left(\zeta^T x_i\right)b(x_i).$$
 (9)

The importance sampling estimator $I_N(h|\overline{w}^*)$ is unbiased and (ϵ, δ) -DP for $\mathbb{E}_{p_{\zeta}}[\exp(\zeta^T x_i)] > 0.$

SDGP	data	$\epsilon = 1$		$\epsilon = 6$	
SDOF	uata	BetaNoised	BetaDebiased	BetaNoised	BetaDebiased
CGAN	Breast	$1.4833_{\pm 0.9603}$	$0.0775_{\pm 0.0197}$	$0.0024_{\pm 0.0006}$	$0.0020_{\pm 0.0004}$
	Banknote	$0.0420_{\pm 0.0211}$	$0.0413 _{\pm 0.0196}$	$0.0014_{\pm 0.0007}$	$0.0014 _{\pm 0.0007}$
	Iris	$8.7522_{\pm 4.9893}$	$3.4687 _{\pm 1.3044}$	$0.1160 _{\pm 0.0240}$	$0.1290_{\pm 0.0311}$
GAN	Housing	$8.2081_{\pm 7.7702}$	$1.4406 _{\pm 0.8314}$	$3.7916_{\pm 3.3246}$	$1.5479 _{\pm 1.0430}$
DPCGAN	Breast	$0.0582_{\pm 0.0165}$	$0.0445 _{\pm 0.0162}$	$0.0015_{\pm 0.0003}$	$0.0014 _{\pm 0.0003}$
	Banknote	$0.0420_{\pm 0.0211}$	$0.0413 _{\pm 0.0196}$	$0.0022_{\pm 0.0013}$	$0.0021 _{\pm 0.0012}$
	Iris	$0.7834 _{\pm 0.2341}$	$1.2300 {\scriptstyle \pm 0.7050}$	$0.2502 _{\pm 0.1627}$	$0.2806_{\pm 0.1760}$
DPGAN	Breast	$6.0487_{\pm 3.7927}$	$3.7629 _{\pm 2.2881}$	$0.0251_{\pm 0.0245}$	$0.0238 _{\pm 0.0234}$
	Banknote	$0.0582 _{\pm 0.0353}$	$0.0610 _{\pm 0.0397}$	$0.0062_{\pm 0.0057}$	$0.0061 _{\pm 0.0056}$
	Iris	$2.6486_{\pm 1.3518}$	$1.3698 _{\pm 1.1554}$	$0.0741 _{\pm 0.0228}$	$0.0864_{\pm 0.0274}$
	Housing	$5.9175_{\pm 2.8546}$	$0.8398 _{\pm 0.6328}$	$1.9044 {\scriptstyle \pm 1.1426}$	$2.1111_{\pm 1.3450}$

Table 6: Mean squared error of the privatised log importance weights $\log \overline{w}$ resp. $\log \overline{w}^*$ averaged over 10 runs with standard errors reported in brackets for ($\epsilon = 1, \delta = 10^{-5}$) and ($\epsilon = 6, \delta = 10^{-5}$) where $\epsilon_{IW} = 0.1\epsilon$.

3) Differentially Private Deep Learning

Algorithm 1: Relaxed DP SGD

Input: Examples $x_{1:N_D}, y_{1:N_D}$ from the DGP and $x_{N_D+1:N_D+N_G}, y_{N_D+1:N_D+N_G}$ from the SDGP, loss function $\mathcal{L}(\theta) = \frac{1}{N_G+N_D} \sum_i \mathcal{L}(\theta, x_i, y_i)$. Parameters: learning rate η_t , noise scale σ , expected lot size L, gradient norm bound C . Initialise θ_0 randomly for $t \in [T]$ do Construct a random subset $L_t \subset \{1, \dots, N_D + N_G\}$ by including each index independently at random with probability $\frac{L}{N_D+N_G}$ Compute gradient For each $i \in L_t$, compute $g_t(x_i, y_i) \leftarrow \Delta_{\theta_t} \mathcal{L}(\theta_t, x_i, y_i)$
$\begin{aligned} & \text{SDGP, loss function} \\ & \mathcal{L}(\theta) = \frac{1}{N_G + N_D} \sum_i \mathcal{L}(\theta, x_i, y_i). \text{ Parameters:} \\ & \text{ learning rate } \eta_t, \text{ noise scale } \sigma, \text{ expected lot size} \\ & L, \text{ gradient norm bound } C. \end{aligned}$ $\begin{aligned} & \text{Initialise } \theta_0 \text{ randomly} \\ & \text{for } t \in [T] \text{ do} \\ & \text{ Construct a random subset} \\ & L_t \subset \{1, \dots, N_D + N_G\} \text{ by including each index} \\ & \text{ independently at random with probability } \frac{L}{N_D + N_G} \\ & \text{ Compute gradient} \\ & \text{ For each } i \in L_t, \text{ compute} \end{aligned}$
$ \mathcal{L}(\theta) = \frac{1}{N_G + N_D} \sum_i \mathcal{L}(\theta, x_i, y_i). \text{ Parameters:} \\ \text{learning rate } \eta_t, \text{ noise scale } \sigma, \text{ expected lot size} \\ L, \text{ gradient norm bound } C. \\ \text{Initialise } \theta_0 \text{ randomly} \\ \text{for } t \in [T] \text{ do} \\ \text{Construct a random subset} \\ L_t \subset \{1, \dots, N_D + N_G\} \text{ by including each index} \\ \text{ independently at random with probability } \frac{L}{N_D + N_G} \\ \text{Compute gradient} \\ \text{For each } i \in L_t, \text{ compute} \\ \end{cases} $
$\begin{array}{l} \text{learning rate } \eta_t, \text{ noise scale } \sigma, \text{ expected lot size } \\ L, \text{ gradient norm bound } C. \end{array}$ $\begin{array}{l} \text{Initialise } \theta_0 \text{ randomly} \\ \text{for } t \in [T] \text{ do} \\ \\ \text{Construct a random subset} \\ L_t \subset \{1, \dots, N_D + N_G\} \text{ by including each index } \\ \text{ independently at random with probability } \frac{L}{N_D + N_G} \\ \\ \text{Compute gradient} \\ \\ \text{For each } i \in L_t, \text{ compute} \end{array}$
$L, \text{ gradient norm bound } C.$ Initialise θ_0 randomly for $t \in [T]$ do Construct a random subset $L_t \subset \{1, \dots, N_D + N_G\}$ by including each index independently at random with probability $\frac{L}{N_D + N_G}$ Compute gradient For each $i \in L_t$, compute
Initialise θ_0 randomlyfor $t \in [T]$ doConstruct a random subset $L_t \subset \{1, \dots, N_D + N_G\}$ by including each indexindependently at random with probability $\frac{L}{N_D + N_G}$ Compute gradientFor each $i \in L_t$, compute
for $t \in [T]$ do Construct a random subset $L_t \subset \{1, \dots, N_D + N_G\}$ by including each index independently at random with probability $\frac{L}{N_D + N_G}$ Compute gradient For each $i \in L_t$, compute
Construct a random subset $L_t \subset \{1, \dots, N_D + N_G\}$ by including each indexindependently at random with probability $\frac{L}{N_D + N_G}$ Compute gradientFor each $i \in L_t$, compute
$L_t \subset \{1, \dots, N_D + N_G\}$ by including each index independently at random with probability $\frac{L}{N_D + N_G}$ Compute gradient For each $i \in L_t$, compute
independently at random with probability $\frac{L}{N_D+N_G}$ Compute gradient For each $i \in L_t$, compute
Compute gradient For each $i \in L_t$, compute
For each $i \in L_t$, compute
$a(m, u) \leftarrow \Lambda \cdot C(A, m, u)$
$g_t(x_i, g_i) \leftarrow \Delta_{\theta_t} \mathcal{L}(v_t, x_i, g_i)$
Clip gradient
$\overline{g}_t(x_i, y_i) \leftarrow g_t(x_i, y_i) / \max(1, \frac{ g_t(x_i, y_i) _2}{C})$
Add noise
$\tilde{g}_t \leftarrow \frac{1}{L} \sum_{i \in L_t} (\overline{g}_t(x_i, y_i) + N(0, \sigma^2 C^2 \mathbf{I}) \mathbb{1}_{(y_i = 1)}),$
where $\mathbb{1}_{(y_i=1)}$ is 1 if $y_i = 1$ and 0 otherwise
Descent
$\theta_{t+1} \leftarrow \theta_t + \eta_t \tilde{g}_t$
Output: θ_T and the overall privacy cost (ϵ, δ) using the
moment's accountant of Abadi et al. (2016)
with sampling probability $q = \frac{L}{N_D + N_G}$.

- 1 Train Differentially Private Synthetic Data Generator
- 2 Generate Synthetic Data Samples
- 3 Estimate Differentially Private Importance Weights
- 4 Perform downstream tasks on importance weighted synthetic data

Versatility of Importance Weighting

Empirical Risk Minimisation

$$\frac{1}{N_D} \sum_{i=1}^{N_D} h(f(\cdot), x'_i) \approx \mathbb{E}_{x \sim p_D} \left[h(f(\cdot), x) \right]$$

Versatility of Importance Weighting

Empirical Risk Minimisation

$$\frac{1}{N_D}\sum_{i=1}^{N_D} h(f(\cdot), x'_i) \approx \mathbb{E}_{x \sim p_D} \left[h(f(\cdot), x) \right]$$

Bayesian Updating

$$\pi_{IW}(\theta|\tilde{x}) \propto \pi(\theta) \exp\left(\sum_{i=1}^{N_G} w(x_i) \log f(x_i|\theta)\right)$$

Versatility of Importance Weighting

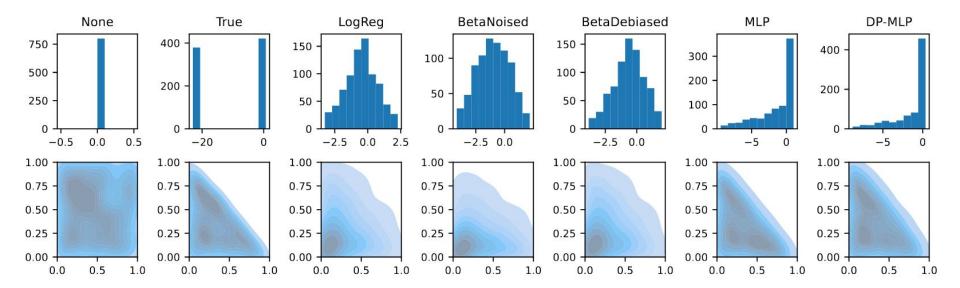
Empirical Risk Minimisation

$$\frac{1}{N_D}\sum_{i=1}^{N_D} h(f(\cdot), x'_i) \approx \mathbb{E}_{x \sim p_D} \left[h(f(\cdot), x) \right]$$

Bayesian Updating

$$\pi_{IW}(\theta|\tilde{x}) \propto \pi(\theta) \exp\left(\sum_{i=1}^{N_G} w(x_i) \log f(x_i|\theta)\right)$$

Data Visualisation



References

Ghalebikesabi, Sahra, et al. "Bias Mitigated Learning from Differentially Private Synthetic Data: A Cautionary Tale." UAI (2022).

Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." *Foundations and Trends*® *in Theoretical Computer Science* 9.3–4 (2014): 211-407.

Chaudhuri, Kamalika, Claire Monteleoni, and Anand D. Sarwate. "Differentially private empirical risk minimization." *Journal of Machine Learning Research* 12.3 (2011).

Grover, Aditya, et al. "Bias correction of learned generative models using likelihood-free importance weighting." *Advances in neural information processing systems* 32 (2019).

Ji, Zhanglong, and Charles Elkan. "Differential privacy based on importance weighting." *Machine learning* 93.1 (2013): 163-183.

Abadi, Martin, et al. "Deep learning with differential privacy." *Proceedings of the 2016 ACM SIGSAC conference on computer and communications security*. 2016.

Useful Links

https://sghalebikesabi.github.io

