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Abstract

Shapley values provide model agnostic feature attributions for
model outcome at a particular instance by simulating feature ab-
sence under a global population distribution. The use of a global
population can lead to potentially misleading results when local
model behaviour is of interest. Hence we consider the formula-
tion of neighbourhood reference distributions that improve the lo-
cal interpretability of Shapley values. By doing so, we find that the
Nadaraya-Watson estimator, a well-studied kernel regressor, can
be expressed as a self-normalised importance sampling estimator.
Empirically, we observe that Neighbourhood Shapley values iden-
tify meaningful sparse feature relevance attributions that provide
insight into local model behaviour, complimenting conventional
Shapley analysis. They also increase on-manifold explainability
and robustness to the construction of adversarial classifiers.

Definition of Shapley values. For a pre-defined value function
v(T, x) that takes a set of features T ⊆ {1, ...,m} as input, the Shap-
ley value φv(j, x) of feature j measures the expected change in the
value function from including feature j into a random subset of
features S ⊆ {1, ...,m} \ j (without j)

φv(j, x) = E
S
[v(S ∪ j, x)− v(S, x)]

where the expectation is taken over the feature coalitions whose
distribution is defined by P (S) = |S|!(m−|S|)!

m! . This choice of prob-
ability distribution ensures that sampling a set of size k has the
same probability as sampling one of size l, P ({S

∣∣ |S| = k}) =

P ({S
∣∣ |S| = l}) for k, l ∈ {0, ...,m− 1}.

The value function is typically chosen as the expectation of the
black box algorithm f at observation x over the not-included fea-
tures S using a reference distribution r(X∗

S
| x) such that

v(S, x) = E
r(X∗

S
| x)

[f (xS, X
∗
S
)]

for S := {1, . . . ,m}/S and the operation (xS, xS) denoting the
concatenation of its two arguments. Marginal Shapley values
[4, 3] define r(X∗

S
| x) := p(X∗

S
) where p denotes the marginal

data distribution. Conditional Shapley values [1] set the refer-
ence distribution equal to the conditional distribution given xS,
r(X∗

S
| x) := p(X∗

S
|X∗S = xS). All in all, the Shapley value φ(j, x) is

characterised by the expected change in model output, comparing
the output when we include j in the model, i.e. integrate out some
randomly sampled features S \ j, with the model output where

feature j is not included, i.e. we integrated out some randomly
sampled features including j, S

φ(j, x) =E
S

[
E

r(X∗
S\j | x)

[f (xS∪j, X
∗
S\j)]− E

r(X∗
S
| x)

[f (xS, X
∗
S
)]

]
.

Our contribution. As we see, Shapley values are computed by
estimating the change in model outcome when some features are
integrated out over the reference distribution r(X∗

S
| x), which has

so far been defined as either the marginal or conditional global
population. For marginal Shapley values, the interpretation sim-
plifies: The Shapley value of feature j is the expected change in
model outcome when we sample a random individual x∗ from the
global statistical population and set its feature j equal to xj (after
we already set a random set of features S ∈ {1, . . . ,m} \ j equal
to xS). This motivates our proposal of neighbourhood distributions
where we instead sample a random individual from the immediate
neighbourhood of x.
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Figure 1: When sampling {x∗i }
L
i=1 (black dots) from reference distribution r(X∗

S
| x) (here S = ∅),

the Shapley value φ at x is positive since f (x) is larger than Er(X∗
S
| x)[f (xS, X

∗
S
)]. In contrast,

Neighbourhood SHAP φnbrd is negative since En(X∗
S
| x)[f (xS, X

∗
S
)] is larger than f (x). This differ-

ence results from the fact that, first, the model outcome has a local minimum at x, and second,
f (xS, X

∗
S
) takes its smallest values at the tails of the data distribution (right-skewed density of

f (xS, X
∗
S
) when X∗

S
∼ p(X∗

S
), black line on the left). SHAP only captures that f (x) is higher

than the average model outcome but not that f (·) is smaller at x than it is for any other close
observation – this is reflected by Neighbourhood SHAP.

Instead of estimating the neighbourhood distribution, we approxi-
mate the expectation of the model outcome in the neighbourhood
around x using self-normalised importance sampling [2] with pro-
posal distribution r(X∗

S
| x): En(X∗

S
| x)[f (xS, X

∗
S
)] =

E
r(X∗

S
| x)

[
nc · d(X∗S | xS)f (xS, X

∗
S
)
]
≈
∑L

i=1 d(x
∗
i,S
| xS)f (xS, x∗i,S)∑L

i=1 d(x
∗
i,S
| xS)

.

We note that the proposed local neighbourhood sampling scheme
has a convenient form which corresponds to the well-known
Nadaraya-Watson estimator [5, 7, 6] used for kernel regression.

Figure 2: Concatenated data (pink dots) used for model evaluations for the computation of Ker-
nelSHAP (left) and Neighbourhood SHAP (σnbrd = 0.1, right) at a randomly sampled instance
(maroon dots) where the data manifold is a ring in R2. Even though the background references
(blue dots) lie on the data manifold, marginal Shapley values are evaluated at instances that lie
off the data manifold.

Simulated experiment. As a simple motivating example as to
why this question matters, consider a black box model given by
f (x) = x1 > 02x22−x1 ≤ 0x22 where · denotes the indicator function.
When attributing the local feature importance at a test instance
x = (x1, 2), with x2 fixed at 2, we would expect Feature-1 to re-
ceive a higher absolute attribution when x is closer to the decision
boundary at x1 = 0. In Figure 3 we report the results on this exam-
ple from LIME and SHAP as well as for our proposed ‘Neighbour-
hood SHAP’ approach.

Figure 3: Attributions at x = (x1, 2) with x1 varying for a reference distribution of X ∼ (0, 1) and
black box f (x) = x1 > 02x22 − x1 ≤ 0x22 averaged over 10 runs displayed with 95% confidence
intervals (see next section for details). While (Tabular) LIME and SHAP assign the same abso-
lute attribution to Feature-1 no matter how large x1 is, our neighbourhood approach takes its
distance to the decision boundary into consideration. A local linear approximation to the black
box trained with a Ridge Regressor gives misleading attributions to Feature-1 for −0.4 < x1 < 0.
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