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Abstract
We propose a variational autoencoder architecture to model both ig-
norable and nonignorable missing data using pattern-set mixtures as
proposed by Little (1993). Our model explicitly learns to cluster the
missing data into missingness pattern sets based on the observed data
and missingness masks. Underpinning our approach is the assumption
that the data distribution under missingness is probabilistically semi-
supervised by samples from the observed data distribution. Our setup
trades off the characteristics of ignorable and nonignorable missing-
ness and can thus be applied to data of both types. We evaluate our
method on a wide range of data sets with different types of missingness
and achieve state-of-the-art imputation performance. Our model out-
performs many common imputation algorithms, especially when the
amount of missing data is high and the missingness mechanism is non-
ignorable.

1 PROBLEM FORMULATION
Let x = (x1, ..., xd) be a random variable taking values in the d-
dimensional space X = X1 × ... × Xd. We further assume that the
missingness mask m is a random variable defined on {0, 1}d. The
missingness mask is defined such that xj is observed for mj = 1, and
missing otherwise. We denote the joint distribution of x and m by
Pθ(x,m). Following [12], we also introduce a random variable xobs =
(xobs,1, ..., xobs,d) which takes values in Xobs = (X1∪{∗})×· · ·×(Xd∪{∗})
where ∗ is a point not in X1 ∪ .... ∪ Xd and represents unobserved data
points. The random variable xobs is then defined by

xobs,j =

{
xj, if mj = 1

∗, otherwise.

Building upon this, we introduce another random variable xmis with
xmis,j = xj if mj = 0 and xmis,j = ∗ otherwise. We can now retrieve x
as

x = m� xobs + (1−m)� xmis, (1)

where � denotes the Hadamard product. Note that both xmis and
xobs are defined to be d-dimensional random variables. We can inter-
pret such an approach by imagining self-masked missingness, which
means that the missingness probability of each covariate only depends
on the covariate itself such that Pθ(mj|x) = Pθ(mj|xj). Then xmis,j
denotes the outcome of that covariate under the treatment mj = 0 and
xobs,j the outcome under the treatment mj = 1. When we want to
refer to only the observed or missing observations, we instead write
x′obs = {xj | mj = 1 for j ∈ {1, ..., d}} and x′mis = {xj | mj = 0 for j ∈
{1, ..., d}}.

(1) When data are MCAR, i.e.

Pθ(x,m) = Pθ(x)Pθ(m)

(2) or MAR, i.e.

Pθ(x,m) = Pθ(x)Pθ(m|x′obs)

we can maximize the data likelihood without modelling the
missing-data mechanism.

(3) When data are MNAR, the missing-data mechanism is nonignorable
and has to be modeled within a maximum likelihood framework.
[7] differentiate three ways of modelling the joint distribution of x
and m in this case.

2 Nonignorable Missingness Models
(1) Selection models factorize the joint distribution as

Pθ(x,m) = Pθ(x)Pθ(m|x).

This factorization goes along with intuitive missing-data mecha-
nisms: In the MNAR case, the complete data x can be seen as the
cause why some variables are missing. Not-MIWAE [3] and GAIN
[12] can be categorized as such models.

(2) Pattern mixture models factorize the joint distribution as

Pθ(x,m) = Pθ(x|m)Pθ(m),

where Pθ(m) is a categorical distribution and Pθ(x,m) is as a result
a mixture of distributions. The drawback of such a parameteriza-
tion is that Pθ(x|m) is conditional on a high-dimensional categor-
ical variable whose categories are often not completely observed
which leads to the distribution of the missing data being underiden-
tified without any additional assumptions[6]. [1] propose a latent
variable model that optimizes the lower bound of Pθ(xobs|m).

(3) In order to combine the benefits of both factorizations, [6] intro-
duced pattern-set mixture models. These models have an additional
latent variable r with realizations in {1, ..., k} that clusters the miss-
ingness patterns into k missingness pattern-sets. In each missing-
ness pattern-set, the missing data mechanism is modeled using a
selection model. The joint distribution can then be written as

Pθ(x,m, r) = Pθ(r)Pθ(x|r)Pθ(m|x, r). (2)

Compared to pattern mixture models, it requires fewer parameters
(because we are borrowing strengths across the clusters), is less
prone to underidentification and has thus more statistical power.
Regardless of this, it still allows us to cluster the population into
interesting categories. The HIVAE model [10], a Gaussian Mixture
VAE, can be seen as a pattern-set mixture model.

(4) [11] propose shared-parameter models which build upon the as-
sumption that there exists a latent random variable z ∈ Rb for some
b < n conditional on which the missing model and the data model
are independent:

Pθ(x,m|z) = Pθ(x|z)Pθ(m|z).

3 DEEP GENERATIVE PATTERN-SET MIX-
TURE MODEL

We now introduce an imputation approach that combines ideas of vari-
ational autoencoders and pattern-set mixture models. In contrast to
other machine learning imputation methods such as HIVAE[10] or MI-
WAE[8], we thus aim to model the joint distribution Pθ(x,m) instead
of the marginal Pθ(x).

3.1 Generative Model
We will now define a generative model for Pθ(x,m). More specifically,
we will model Pθ(xobs,m,xmis) where we assume for now that xmis
is a latent variable. Then, Pθ(x,m) follows from Equation 1. Assuming
the pattern-set mixture model holds, we introduce an additional la-
tent categorical variable r which groups the missingness patterns into
sets. Following Equation 2 and assuming that Pθ(m|xobs,xmis, r) =
Pθ(m|x, r), we can now write the joint distribution as

Pθ(xobs,m,xmis, r) = Pθ(r)Pθ(xobs,xmis|r)Pθ(m|x, r).

Since r is a categorical variable that only captures the pattern-set of an
observation, we introduce an additional continuous latent variable z

that models the latent interaction of xmis and xobs. Given z and r, we
then assume the joint of xmis and xobs to fully factorize implying

Pθ(xmis,xobs) =
d∏
j=1

Pθ(xmis,j|z, r)Pθ(xobs,j|z, r).

If additional information on the missing data mechanism Pθ(m|x, r) is
available, we can write the generative model as

Pθ(xobs,m,xmis, z, r) (3)
= Pθ(m|x, r)Pθ(xobs|r, z)Pθ(xmis|r, z)Pθ(z|r)Pθ(r).

While [3] only show how one uniform missing model can be parame-
terized for the whole population, our approach allows to account for
different missingness models. This can be interesting when part of the
data is assumed to be MCAR while some observations can be MNAR.
We parameterize the generative model of the VAE using a neural net-
work for improved data fit. Allowing the missing model Pθ(m|x, r) to
be parameterized by a neural network has the disadvantage that the
fit of Pθ(xobs,xmis|r) suffers from the flexibility of the missing model.
This statement is strengthened by the empirical results of [3]. Since
for any MNAR model there is an MAR model with equal fit to the ob-
served data, it is not possible to test for MNAR without any further
assumptions on the missing data mechanism[9]. For this reason, it
is important to choose an imputation algorithm that finds a trade off
between flexibility of the missingness model and the distortion it in-
duces into the data model when the data are MCAR. We find that this
dilemma can be solved by the assumption made when using shared
parameter models that xobs,xmis and m are independent conditional
on the pattern-set indicator r and the continuous latent representation
z. Such a model has been proven to be more robust to model specifica-
tion[2]. When no additional information on Pθ(m|x) is available, we
thus formalize the generative model as

Pθ(xobs,m,xmis, z, r) (4)
= Pθ(r)Pθ(z|r)Pθ(xmis|r, z)Pθ(xobs|r, z)Pθ(m|r, z).

3.2 Probabilistic Semi-Supervision
As we do not observe the missing data, we can however only optimize
for the parameters of Pθ(xobs,m). A sensible choice is to treat xmis
as a latent factor learned from xobs and m[10]. Without any further
assumptions, the distribution of xmis would be underidentified given
the observed data.
We can regularize the problem and introduce smoothness through a
novel process involving information sharing and semi-supervision[5,
4]. For any covariate of any sample xiobs,j with j ∈ {1, ..., d} and
i ∈ {1, ..., n}, we assume xiobs,j is not only an observation of xobs,j,
but also of xmis,j with probability 1 − πi,j if mi,j = 1. Put simply, we
sample each ximis,j from

yi,jPθ(x̃mis,j) + (1− yi,j)1(xiobs,j),

where 1 is the indicator function, x̃mis,j is a latent auxiliary variable
that describes the unobserved dynamics of the missing data, and yj is
an independent Bernoulli random variable with known success proba-
bility π′ if mj = 1, and with probability 1 otherwise. We then define
the augmented data set as

Dπ(y1, ...,yn) := D ∪ {ximis,j; y
i
j = 0}i,j. (5)

For simplicity, let us assume for now that we observe a single univari-
ate data point x0obs,0 with m0

0 = 0 such that D = {x0obs,0,m
0
0}. With

probability 1 − π′, it holds that y00 = 0. We then assume that x0mis,0
is also observed with value x0obs,0 and the augmented data set is thus
Dπ(y00 = 0) = {x0obs,0,m

0
0, x

0
mis,0}. In this case, we maximize the like-

lihood Pθ(xobs,0,m0, xmis,0|Dπ(y00 = 0)). With probability π′, however,
it holds that y00 = 1 and x0mis,0 is assumed to be unobserved. We then
have Dπ(y00 = 1) = {x0obs,0,m

0
0} = D. We now maximize the likelihood

Pθ(xobs,0,m0|Dπ(y00 = 1)). Since we know the true distribution of y00,
we can also marginalize out y0 and maximize the weighted likelihood

π′Pθ(xobs,0,m0|Dπ(y00 = 1))

+ (1− π′)Pθ(xobs,0,m0, xmis,0|Dπ(y00 = 0)).

In a more general setting, we can write the expected likelihood given
the augmented data set as

Ey[Pθ(xobs,xmis,1−y,m|Dπ(y))]
= πPθ(xobs,m|Dπ(1))
+ (1− π)Pθ(xobs,m,xmis|Dπ(0)),

where xmis,1−y := {xmis,j|yj = 0 for j ∈ {1, ..., d}}, and 1 and 0
are d-vectors of ones and zeros respectively. We only assume semi-
supervision for the covariates xmis,j|(mj = 1) ∈ {∗} which drop out
in the generation process of xj (1). The parameter π can thus be in-
terpreted as confidence on the ignorability of the missing model: the
greater π is, the less likely xmis,j stems from an observed distribution.
Note that this approach is equivalent to a biased data augmentation
approach and that we do not modify the generative model here.
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