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Images from the Pascal Voc 2007 data set
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Some people thought it might be cool to explain my model

Image from Been Kim’s DLSS 2018 talk
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Image from Lapuschkin (2019)
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What is an Explanation Model?

● Model that explains a different model

→ ask a better question



What is the GOAL of your explanation model?

● Understanding

● Trust

● Feature Selection

● Actionable Advice

Image from Ribeiro et al (2017)
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Robust and verified Machine Learning

Machine

Explainability

Causality

Robustness/Fairness



We need Explainability!



Different Camps of XAI

Local interpretability 

Image from Lapuschkin (2019)

Global interpretability 

Why is this image labelled as a car?

What do all car-labelled images 
have in common?

Image from Lapuschkin (2019)



Different Camps of XAI

Image from https://saferoad.org/best-tool-chests-reviews/

Model-agnostic interpretability 

Image from https://subtleyoga.com/why-now-perhaps-more-than-ever-is-a-good-time-to-have-a-magic-word/wingardium-leviosa/

Model-specific interpretability 

from her MLSS22 talk

I will explain you no 
matter what!

How does it look 
inside?



Different Camps of XAI

Image from https://beenkim.github.io/

Intrinsic interpretability 

Image from https://users.cs.duke.edu/~cynthia/

Post-hoc interpretability 

https://corels.eecs.harvard.edu/corels/whatarerulelists.html

from her MLSS22 talk



Decision trees / Rule Lists are explainable!

https://beenkim.github.io/slides/DLSS2018Vector_Been.pdf



Decision trees / Rule Lists are explainable!

https://beenkim.github.io/slides/DLSS2018Vector_Been.pdf

In practise with penalties on 
number of splits or parameters 
used 
→ Sparsity



Risk-Calibrated Supersparse Linear Integer Models



This looks like that (Chen, 2019)



This looks like that (Chen, 2019)



True Rashomon Sets

https://users.cs.duke.edu/~cynthia/docs/KDDRashomonForPrint.pdf



Rashomon Ratio

https://users.cs.duke.edu/~cynthia/docs/KDDRashomonForPrint.pdf



You can bound the loss in performance of simple models!

https://users.cs.duke.edu/~cynthia/docs/KDDRashomonForPrint.pdf
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Decision trees are explainable?

https://beenkim.github.io/slides/DLSS2018Vector_Been.pdf



Counterfactual Explanations (aka Algorithmic Recourse)
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to change the least to flip the 
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LOAN DENIED

How would the numbers need 
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Counterfactual Explanations (aka Algorithmic Recourse)

LOAN DENIED

How would I need to interfere 
the least to flip the decision?

With causality



Partial Dependence Plots

https://towardsdatascience.com/an-overview-of-model-explainability-in-modern-machine-learning-fc0f22c8c29a



Shapley Values (Lundberg and Lee, 2017)



LIME (Ribeiro et al., 2016)



LIME (Ribeiro et al., 2016)



Problems with Tangent Line Approximations

● If a linear fit is good enough, why not just have a locally linear black box? 
(Rudin, 2019) 

● Consider the black box 



Problems with Tangent Line Approximations

● If a linear fit is good enough, why not just have a locally linear black box? 
(Rudin, 2019) 

● Consider the black box 

for x1=-0.001, the feature attribution of Feature-2 is negative 



Can we just take the gradients?

No!



Can we just take the gradients?

No!

Look at 

f(x)= ReLU(1-x)

we want to explain x*=2



Can we just take the gradients?

No!

Look at 

f(x)= ReLU(1-x)

we want to explain x*=2

not sensitive wrt x=0



Layer-wise relevance propagation (Bach et al, 2016)

Montavon et al (2019)



Layer-wise relevance propagation (Bach et al, 2016)

Montavon et al (2019)

not 
implementation 

invariant



Integrated Gradients (Sundararajan et al, 2017)
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Integrated Gradients (Sundararajan et al, 2017)



Integrated Gradients (Sundararajan et al, 2017)

Sensitivity

Implementation Invariance

Completeness

Linearity



Integrated Gradients (Sundararajan et al, 2017)



Convolutional layers learn interpretable concepts

Best Practice Guide - Deep Learning - Scientific Figure on ResearchGate. Available from: 
https://www.researchgate.net/figure/Schematic-illustration-of-a-convolutional-operation-The-convolutional-kernel-shifts-over_fig2_332190148 [accessed 24 Mar, 2022]



Convolutional layers learn interpretable concepts

https://developer.nvidia.com/blog/deep-learning-nutshell-core-concepts/



Grad-CAM



Attention Visualisation



TCAV: Testing with Concept Activation Vectors (Kim et al, 
2018)

Been Kim’s MLSS 2021 talk, https://beenkim.github.io/



TCAV: Testing with Concept Activation Vectors (Kim et al, 
2018)

Been Kim’s MLSS 2021 talk, https://beenkim.github.io/



Surrogate Modelling?!

● More Fidelity
● No “Double Trouble”

● Explainable models 
not necessarily 
explainable

● Loss in prediction 
accuracy

● Black box access



Saliency maps are informative and elicit trust!

Image from Rudin (2019)



Saliency maps are informative and elicit trust?

Image from Rudin (2019)



Sanity checks of saliency maps (Adebayo, 2018)



Saliency methods are unreliable (Kindermans et al., 2019)



Fooling Explainability Tools (Slack et al., 2020)

��
evil model that does not hire black 

applicants 
(no one can know!)
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Strategy

⛔
✅
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Adversarial Attacks on Explanations

from Been Kim’s MLSS 2021 talk



But if XAI doesn’t work, what can we do?



But if XAI doesn’t work, what can we do?



1) Evaluate Exclusion and Inclusion Criteria (i.e. 
Dabkowski and Gal, 2017 or Hooker, 2019)



2) Handcraft sanity check data sets

https://github.com/google-research-datasets/bam



3) Look at classes that are not true, False positives, False 
negatives,... (Adebayo, 2018)



4) Human evaluations



5) Risk diversification

http://mlwiki.org/index.php/Portfolio_Management



6) Exploratory data analysis

Been Kim’s MLSS 2021 talk, https://beenkim.github.io/



6) Exploratory data analysis

Been Kim’s MLSS 2021 talk, https://beenkim.github.io/



Influence Functions (Koh and Liang, 2017)
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Influence Functions (Cook and Weisberg, 1982)

Find new optimal parameter

Influence of upweighting on parameters θ

What happens if I upweight observation z by (1+Є)



Influence Functions (Koh and Liang, 2017)

perturb one training point

Find new optimal parameter

Influence of perturbing z by δ Holds for arbitrary δ



Take home message
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If you have any questions, please let me know

sghalebikesabi

sahra.ghalebikesabi@univ.ox.ac.uk

https://sghalebikesabi.github.io
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